
Event Handling
 One of the key concepts in GUI programming is

Event Handling.
 Something (Mouse click / Key press, Menu Selection,

Timer expiring, Network message received) happens.
These would be all Event Sources.

 Some GUI components might care about one of
these things happening and need to react to it. These
components would register themselves with the
Event Source, so the source would tell them when
something happens. These are the Event Listeners.

Event Handling in other Languages

 If you’ve ever used VB, in VB Event handling is easy.
To start with, every component is click and drag.
Then, each has event code prewritten in it – so a VB
Button would have a procedure called
VBButton_Click, and then you can put the code you
want to run when that button is clicked right in there.

 Doing Event Handling in native C, on the other hand,
is extremely hard. You have to manually check the
OS’s event queue, then decide what to do. Doing
this in a clean fashion is impossible.

Event Handling in Java
 Java takes a middle-of-the-road approach, but in

terms of ease of use and power.
 Java provides ways to hook into different events

through different Interfaces.

Event Basics
 All Events are objects of Event Classes.
 All Event Classes derive from EventObject.
 When an Event occurs, Java sends a message to

all registered Event Listeners from the Event
source (this actually was a change, the old AWT
event model would send it out to everyone).

Event Handling in Java
Act that results in the event Listener type

User clicks a button, presses Return while
typing in a text field, or chooses a menu item

ActionListener

User closes a frame (main window) WindowListener

User presses a mouse button while the
cursor is over a component

MouseListener

User moves the mouse over a component MouseMotionListener

Component becomes visible ComponentListener

Component gets the keyboard focus FocusListener

Table of list selection changes ListSelectionListener

Registering Event Listeners
 To register a listener object with a source object,

you use lines of code that follow the model

eventSourceListener.addEventListener(eventListenerObject);

 So, from here we have 2 ways to create the listener
object.
 Create a class that implements that interface

(ActionListener, WindowListener, etc.)
 Use an anonymous Inner Class and attach it

Registering Event Listeners
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class MyListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

//code to run
}

}

ActionListener listener = new MyListener();
JButton button = new JButton(“Ok”);
button.addActionListener(listener);

Event Listeners
 When the user clicks the button, the JButton

object generates an ActionEvent object.
 It this calls the listener object’s

actionPerformed() method and passes that
method the event object it just generated.

 Note that a single event source can have multiple
listeners listening for its events. In this case, the
source calls the actionPerformed() method of
each of its listeners when the event is generated.

Or… (the way everyone does
it.. with a Inner Class)
JButton button=new JButton(“OK”);
button.addActionListener(new ActionListener() //Anon Inner class
{

public void actionPerformed(ActionEvent e)
{

//handling code here
}

});

Things to realize
 If we’re doing Event handling, we probably need

to import javaw.swing.* (for the Swing
components), java.awt.* and java.awt.event.*
(for the Event handling stuff). Another example
of how Swing and AWT comingle.

 the ActionListener interface defines only 1
method, actionPerformed. Others, like
WindowListener and the MouseListeners, define
more than 1. You have to implement them all to
use it. More on this shortly.

Another Example
public class ButtonTest extends JPanel {

JButton actionButton;
JTextField theField;

ButtonTest() //constructor
{

theField=new JTextField(20);
actionButton=new JButton(“Set Text Field”);
this.add(theField); // add components to ourself (we’re a panel)
this.add(actionButton);
actionButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

theField.setText(“JButton was pressed”);
}

});
}}

Other Listener Classes
 So far, we’ve only dealt with ActionListeners, which

only have 1 method defined, actionPerformed.
 Some Event classes have multiple methods defined,

for instance, WindowListener, which looks like
public interface WindowListener {

void windowOpened(WindowEvent e);
void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);
void windowIconified(WindowEvent e);
void windowDeIconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeActivated(WindowEvent e);

}

Adapter Classes
 So?
 Well, since these are interfaces, it means you have to

defined every method listed. So, to add an
windowListener to a JFrame, you’d have to

JFrame frame=new JFrame();
frame.addWindowListener(new WindowListener()
{

public void windowOpened(WindowEvent e)
{

Log.journal(“Frame Opened”);
}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
//… for every method in the Interface

});

Adapter Classes
 This is the kind of mindless garbage that drives

Developers nuts. If you’re the boss, this is not
what you want your $50+/hr. Software
Engineers doing.

 Java provides something called Adapter classes,
which will overload these methods automatically
to do nothing. You can then overload the select
ones to do what you want

Adapter Classes
public class winAdapter extends WindowAdapter
{

//WindowAdapter overloads all 7 methods in the WindowListner interface
//Now we overload those we want to do something
public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}

JFrame ourFrame=new JFrame();
ourFrame.addWindowListener(new winAdapter());

Adapter Classes
 We can even bring this a level further. Just use

an anonymous inner class to use the Adapter
class.

JFrame ourFrame=new JFrame();
ourFrame.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

});

Which way is better?
 Which approach is better? Using anonymous

inner classes, or creating new classes which
handle the listener events?

 From a performance standard, it’s a tie. Inner
classes are just transformed into regular classes
by the compiler, delimited with a $ to denote the
inner and outer class names.

Which way is better?
 However, from an OOP standpoint, the inner

class method gets the nod. Each event source
gets its own listener, which can directly modify
whatever created it, because it’s an inner class.

 It also makes it more readable, since the code is
right there where the event gets attached.

Different types of Event
 Java makes a useful distinction between two types of

events. low-level events and semantic events.
 A semantic event is something like a user clicking

a button. ActionEvents are semantic events.
 A low-level event is something like a key being

pressed, or a mouse moving.
 Semantic Events are built upon low level events

and are handled for you

Different types of Events
 So, semantic events are ActionEvents,

AdjustmentEvents (scroll bar moves), ItemEvents
(something selected from a CheckBox) and
TextEvents (text is a field was changed).

 Low level events are KeyEvents, MouseEvents,
MouseWheelEvents, FocusEvents,
WindowEvents, ContainerEvents (something
added or removed from a container), and
ComponentEvents (something being resized)

Focus Events
 A FocusEvent occur when a component gains or

loses focus (when you like in a JTextArea, it
gains the focus).

 FocusListener has two methods, focusGained()
and focusLost(). The code within focusGained
will be run when the attached component gains
focus, and focusLost() will be run with that
component loses focus.

Key Events
 A KeyEvent is generated when a key is pressed

or released.
 KeyListener must implement three methods,

keyPressed(), keyReleased(), and keyTyped().
 keyPressed() will run whenever a key is pressed,

keyReleased() will run whenever that key is
released, and keyTyped() combines the two – its
runs when the key is pressed and then released,
and signifies a keystroke.

Key Events
 But who do you register the KeyEvent to? Isn’t

the keyboard kind of a system-wide thing?
 Any component can be a KeyListener. If you

make JTextField the KeyListener, it will generate
the appropriate events to dispatch.

Mouse Events
 Mouse Events are generated whenever a mouse

moves. If you’re only concerned with Semantic
events (Buttons clicked, scrollbars moved, etc.)
then you do not need to worry about
MouseEvents.

 MouseEvents are generated like KeyEvents –
mousePressed(), mouseReleased(), and
mouseClicked(). You can ignore the first two if
you only care about clicking.

Mouse Events
 You can call the getClickCount() method on a

MouseEvent object to distinguish between a
single and a double click.

 You can distinguish between the various mouse
buttons by calling the getModifiers() method on a
MouseEvent object.

 MouseEvents are also generated when the
mouse pointer enters and leaves components
(mouseEntered() and mouseExited()).

Mouse Events
 All of these methods are part of the

MouseListener interface.
 The actual movement of the mouse is handled

with the MouseMotionListener interface.
 This is done because most applications only care

about where you click and not how and where
you move the mouse pointer around.

Custom Events
 It is possible to create custom events in Java.
 Basically, you create an Event class that extends

AWTEvent, and insert into the event queue using
the Toolkit.getDefaultToolKit()

.getSystemEventQueue()

.postEvent(event);
 However, this should only be used where there is

no other possible way. This also has security
implications, and it isn’t allowed in Applets.

